Hi! I’m the same team as ‘iwill231’.
The experimental results are as follows.
I used the supervised model you mentioned(resnet50_in1k_supervised(for detection)).
paper : 68.5 ± 0.3 (as shown on table 6)
attempt : 48.935
In the experiment, the metric was displayed as follows:
=== TRAIN PHASE ===
json_stats: {“accuracy_cls”: “0.970703”, “eta”: “0:00:19”, “iter”: 29800, “loss”: “0.230634”, “loss_bbox”: “0.155998”, “loss_cls”: “0.087899”, “lr”: “0.000200”, “mb_qsize”: 64, “mem”: 3228, “time”: “0.099779”}
json_stats: {“accuracy_cls”: “0.972656”, “eta”: “0:00:17”, “iter”: 29820, “loss”: “0.227868”, “loss_bbox”: “0.144723”, “loss_cls”: “0.075733”, “lr”: “0.000200”, “mb_qsize”: 64, “mem”: 3228, “time”: “0.099779”}
json_stats: {“accuracy_cls”: “0.974609”, “eta”: “0:00:15”, “iter”: 29840, “loss”: “0.262981”, “loss_bbox”: “0.184999”, “loss_cls”: “0.077793”, “lr”: “0.000200”, “mb_qsize”: 64, “mem”: 3228, “time”: “0.099779”}
json_stats: {“accuracy_cls”: “0.974609”, “eta”: “0:00:13”, “iter”: 29860, “loss”: “0.238943”, “loss_bbox”: “0.173168”, “loss_cls”: “0.075246”, “lr”: “0.000200”, “mb_qsize”: 64, “mem”: 3228, “time”: “0.099780”}
json_stats: {“accuracy_cls”: “0.964844”, “eta”: “0:00:11”, “iter”: 29880, “loss”: “0.294908”, “loss_bbox”: “0.180296”, “loss_cls”: “0.104424”, “lr”: “0.000200”, “mb_qsize”: 64, “mem”: 3228, “time”: “0.099780”}
json_stats: {“accuracy_cls”: “0.976562”, “eta”: “0:00:09”, “iter”: 29900, “loss”: “0.273847”, “loss_bbox”: “0.174627”, “loss_cls”: “0.078685”, “lr”: “0.000200”, “mb_qsize”: 64, “mem”: 3228, “time”: “0.099781”}
json_stats: {“accuracy_cls”: “0.968750”, “eta”: “0:00:07”, “iter”: 29920, “loss”: “0.289842”, “loss_bbox”: “0.194769”, “loss_cls”: “0.097236”, “lr”: “0.000200”, “mb_qsize”: 64, “mem”: 3228, “time”: “0.099781”}
json_stats: {“accuracy_cls”: “0.976562”, “eta”: “0:00:05”, “iter”: 29940, “loss”: “0.255976”, “loss_bbox”: “0.158928”, “loss_cls”: “0.072126”, “lr”: “0.000200”, “mb_qsize”: 64, “mem”: 3228, “time”: “0.099782”}
json_stats: {“accuracy_cls”: “0.976562”, “eta”: “0:00:03”, “iter”: 29960, “loss”: “0.209973”, “loss_bbox”: “0.150499”, “loss_cls”: “0.070146”, “lr”: “0.000200”, “mb_qsize”: 64, “mem”: 3228, “time”: “0.099783”}
json_stats: {“accuracy_cls”: “0.957031”, “eta”: “0:00:01”, “iter”: 29980, “loss”: “0.299155”, “loss_bbox”: “0.194809”, “loss_cls”: “0.098019”, “lr”: “0.000200”, “mb_qsize”: 64, “mem”: 3228, “time”: “0.099783”}
json_stats: {“accuracy_cls”: “0.972656”, “eta”: “0:00:00”, “iter”: 29999, “loss”: “0.280807”, “loss_bbox”: “0.190085”, “loss_cls”: “0.090866”, “lr”: “0.000200”, “mb_qsize”: 64, “mem”: 3228, “time”: “0.099784”}
=== TEST PHASE ===
INFO json_dataset_evaluator.py: 251: ~~~~ Summary metrics ~~~~
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.172
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.416
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.112
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.015
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.080
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.228
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.222
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.276
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.278
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.026
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.149
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.357
INFO json_dataset_evaluator.py: 218: Wrote json eval results to: /storage/workspace/Network/models/resnet50_in1k_supervised/test/voc_2007_final/ResNet50_fast_rcnn/detection_results.pkl
INFO task_evaluation.py: 62: Evaluating bounding boxes is done!
INFO task_evaluation.py: 185: copypaste: Dataset: voc_2007_final
INFO task_evaluation.py: 187: copypaste: Task: box
INFO task_evaluation.py: 190: copypaste: AP,AP50,AP75,APs,APm,APl
INFO task_evaluation.py: 191: copypaste: 0.1718,0.4157,0.1123,0.0146,0.0799,0.2281